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Abstract

Temporal plans permit significant flexibility in
specifying the occurrence time of events. Plan
execution can make good use of that flexibility.
However, the advantage of execution flexibility
is counterbalanced by the cost during execution
of propagating the time of occurrence of events
throughout the flexible plan. To minimize exe-
cution latency, this propagation needs to be very
efficient. Previous work showed that every tem-
poral plan can be reformulated as a dispatchable
plan, i.e., one for which propagation to immedi-
ate neighbors is sufficient. A simple algorithm was
given that finds a dispatchable plan with a mini-
mum number of edges in cubic time and quadratic
space. In this paper, we focus on the efficiency of
the reformulation process, and improve on that
result. A new algorithm is presented that uses
linear space and has time complexity equivalent
to Johnson’s algorithm for all-pairs shortest-path
problems. Experimental evidence confirms the
practical effectiveness of the new algorithm. For
example, on a large commercial application, the
performance is improved by at least two orders of
magnitude. We further show that the dispatch-
able plan, already minimal in the total number
of edges, can also be made minimal in the max-
imum number of edges incoming or outgoing at
any node.

Introduction

In a control system that distinguishes a deliberative
layer (planner) and a reactive layer (executive) (Pell
et al. 1997; Bonasso et al. 1997; Wilkins et al.
1995; Drabble, Tate, & Dalton 1996; Simmons 1990;
Musliner, Durfee, & Shin 1993; Bresina et al. 1993),
the function of a plan is to provide robust and effective
directives to the executive on how to control a system
toward desired behaviors. To be robust against un-
certainty in the execution environment a plan must be
flexible, i.e., must specify a set of possible acceptable be-
haviors. The executive should be able to choose among
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such behaviors on the basis of the actual execution con-
ditions. To be effective a plan must be localized, i.e., it
must be possible for the executive to locally process the
constraints in the plan and quickly decide which action
to execute next.

To obtain flexibility one can explicitly represent in
the plan the relationship between a set of plan param-
eters as a network of constraints. When receiving the
constraint network, the executive will iteratively pick
one variable and decide which value to assign to it. To
make this decision the executive needs to propagate to
the current variable the consequence of the value as-
signments that have already been made.

Relying on explicit constraint propagation during ex-
ecution can be costly. In fact, the greater the time
needed to propagate through the constraint network,
the higher will be the total time needed by the exec-
utive to decide when and how to execute a task. It
can be shown that this decision time determines the in-
trinsic uncertainty on the exact time of occurrence of
any event in the plan (Muscettola et al. 1998). The
more precise we want the execution of a plan to be,
the less propagation an execution algorithm should per-
form. This is particularly important when plans are
used in mission critical applications (Pell et al. 1997;
Carpenter, Driscoll, & Hoyme 1994) for which the exec-
utive must guarantee to operate within a specific time
bound.

Fortunately for certain classes of constraints one can
rely on the special nature of the execution constraint
propagation process in order to significantly speed it up.
In the rest of the paper we will focus on flexible plans
that represent temporal information as a Simple Tem-
poral Network (STN) (Dechter, Meiri, & Pearl 1991).
In previous work (Muscettola, Morris, & Tsamardinos
1998) we described a simple dispatcher, i.e., an execu-
tion algorithm that maximally localizes execution prop-
agation in STNs. We showed that any STN can be
transformed into an equivalent one that is both dis-
patchable and minimum. An STN is dispatchable if a
dispatcher can generate all assignments of time to time
variables that are consistent with the constraints in the
STN. A dispatchable STN is minimum if it contains the
minimum number of constraints among all dispatchable



networks.
The main focus in the previous paper was to estab-

lish the existence of the transformation to a minimum
dispatchable network. A simple algorithm was given
that performs the transformation in O(N2) space and
O(N3) time, where N is the number of variables in the
original STN. While this is fine for problems of mod-
erate size (hundreds of nodes), it becomes unworkable
for large graphs (tens of thousands of nodes) that may
occur in some applications.

In this paper we give a new transformation algorithm
that, when applied to an input STN with N nodes and
E edges, uses space linear in the size of the input and
output STNs and O(NE + N2 lnN) time. For prob-
lems in which E is roughly proportional to N the new
algorithm can yield very big improvements over our pre-
vious one. In particular, as discussed later in the pa-
per, our current implementation can solve a large prob-
lem from a commercial domain in minutes using tens
of megabytes of memory while best estimates for the
older algorithm yield processing times of several days
and memory usage of tens of gigabytes.

We also revisit the concept of minimality for a dis-
patchable network. It may be argued that to achieve
the best execution performance with a dispatcher, it is
not sufficient for a dispatchable STN to have a mini-
mum number of edges. Among all such networks it is
possible to select a fastest dispatchable network as the
one that also minimizes the maximum in/out degree,
i.e., the number of temporal constraints that enter/exit
a variable in the STN. To this end we present an addi-
tional O(N2 lnN) time transformation step that when
applied to the output of our new transformation algo-
rithm, yields a fastest dispatchable network.

The rest of the paper is organized as follows. The first
section summarizes the results of our previous work and
provides the background for the rest of the paper. The
next section formally describes the new algorithm, while
the succeeding sections justify the algorithm and dis-
cuss experimental results for random and natural prob-
lems. A further section describes the additional trans-
formation to yield the fastest dispatchable network, and
the final section concludes the paper.

Temporal Network Dispatchability
In this section we summarize the main results of our
previous work. See (Muscettola, Morris, & Tsamardi-
nos 1998) for details and proofs.

Recall that Simple Temporal Networks (Dechter,
Meiri, & Pearl 1991) are directed graphs where each
node is an event or time point (e.g., time points A and
B) and each edge AB is marked with a bound delay
[d,D]. The interpretation of each edge is that if TA and
TB are the times of occurrence of A and B respectively,
then in a consistent execution d ≤ TB − TA ≤ D. It
has been shown (Dechter, Meiri, & Pearl 1991) that
finding the ranges of execution times for each event’s
time bounds, is equivalent to solving two single-source
shortest-path problems (Cormen, Leiserson, & Rivest
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Figure 1: Distance Graph.

1990) on a simple transformation of the STN graph.
Figure 1 shows such a distance graph obtained from a
simple plan with two tasks BD and CD of fixed dura-
tions, respectively 1 and 2 time units, that synchronize
at the end (event D) and must start within 10 time
units of a time origin (event A). From now on, any
time we refer to an STN, we will mean the transformed
distance graph.

The simplest algorithm that can select occurrence
times for events at execution is a dispatcher (figure 2).
Unfortunately STNs may not always be correctly exe-
cuted by a dispatcher. For example, since the network
in figure 1 does not contain an explicit edge of length 1
to synchronize C and B, it is possible for the dispatcher
to select B before C, yielding an inconsistent execution.

The STNs that can always be correctly executed by
a dispatcher are called dispatchable. It is always possi-
ble to transform any STN into an equivalent dispatch-
able STN. Trivially, it can be shown that the all-pairs
shortest-path graph (APSP) (Cormen, Leiserson, &
Rivest 1990) derived from the original STN is dispatch-
able. However, this would be the largest dispatchable
network for the problem. We are interested in find-
ing small dispatchable networks, in fact, networks that
contain the minimum total number of edges, or minimal
dispatchable STNs.

In order to find the minimal number of edges in a
dispatchable graph, we look for edges that are domi-
nated in APSP , i.e., whose propagations are subsumed
by those of some other edge in all possible executions.
It has been shown in our previous paper that, for exe-
cution purposes, upper and lower bounds can be inde-
pendently propagated. In fact, it is sufficient to prop-
agate upper bounds through non-negative edges and
lower bounds through negative edges (in the reverse di-
rection (Dechter, Meiri, & Pearl 1991)). So, dominance
relations between lower-bound links (lower-domination)
can be checked separately from those between upper-
bound links (upper-domination). It was also shown that
removal of a dominated edge does not affect the domi-
nance relation between other pairs of edges.

The following fundamental filtering theorem applies.

Theorem 1 (Triangle Rule) Consider an APSP
derived from a consistent STN.



TIME DISPATCHING ALGORITHM:

1. Let

A = {start_time_point}

current_time = 0

S = {}

2. Arbitrarily pick an event TP in A such

that current_time is in TP’s time bound;

3. Set TP’s execution time to current_time

and add TP to S;

4. Propagate the time of execution

to its IMMEDIATE NEIGHBORS in the distance

graph;

5. Put in A all events TPx such that all

negative edges starting from TPx have a

destination that is already in S;

6. Wait until current_time has advanced to

some time between

min{lower_bound(TP) : TP in A}

and

min{upper_bound(TP) : TP in A}

7. Go to 2 until every event is in S.

Figure 2: The Dispatching Execution Controller.

(1) A non-negative edge AC is upper-dominated by
another non-negative edge BC if and only if |AB| +
|BC| = |AC|.

(2) A negative edge AC is lower-dominated by an-
other negative edge AB if and only if |AB| + |BC| =
|AC|.

The transformation algorithm that we proposed in
our previous work is quite simple: it applies the tri-
angle rule in all possible ways to the APSP obtained
from the original STN. Since this algorithm relies on
all shortest paths being known in advance, it requires
O(N2) space. Moreover, the time needed by the algo-
rithm is dominated by applying the filtering rule (con-
stant time) over all possible triples of nodes, yielding a
time complexity of O(N3).

Fast Filtering Algorithm

The algorithm sketched in the previous section pre-
computed APSP and then applied the dispatchability
filtering step. However we can do better if we interleave
filtering with the process of computing the shortest-
paths. The algorithm we propose is a modification of
the Johnson’s all-pairs shortest-path algorithm and its
overall structure is described in figure 3. The references
to lines of JOHNSON in the figure refer to the line num-
bering in the description of Johnson’s algorithm at page
569 of (Cormen, Leiserson, & Rivest 1990).

In the rest of the paper we will discuss the formal
details of how steps 2, 3.b, 3.c and 3.d work and why.
Here we want to give some general observations that
will help frame the rest of the discussion.

The first observation is that it is possible to exploit
to our advantage any amount of “rigidity” present in
the temporal network. Step 2 examines the graph G
and identifies all the sets of time points that are rigidly

FAST-DISPATCHABILITY-MINIMIZATION (G)

1. Run Bellman-Ford pre-processing step

of Johnson’s algorithm

[ lines 1-7 of JOHNSON]

2. [RIGID COMPONENTS PROCESSING]

Identify all rigid components in G.

For each rigid component RC;

a) find a single node representative for

MIN(RC) and contract G so that all

nodes in RC are represented by MIN(RC).

b) output the minimum dispatchable graph for RC.

Call the contracted graph obtained after this

step CONTR_G.

3. [DAG DISPATCHABILITY MINIMIZATION]

For each node A in CONTR_G;

a. Run Dijkstra’s algorithm on CONTR_G

with A as the source [ lines 9-11 of JOHNSON]

b. Do a preliminary depth-first search

of the predecessor graph computed at step a.

to collect the nodes into reverse-postorder.

c. [UPPER-DOMINATES MINIMIZATION]

Find and output all non UPPER-BOUND dominated

edges with source in A;

d. [LOWER-BOUND DOMINATES MINIMIZATION]

Find and output all non LOWER-BOUND dominated

edges in G with source in A;

Figure 3: Fast Dispatch Minimization Algorithm.

connected, i.e., such that once the execution time of one
of them is fixed, we know exactly when all the others
in the set must execute. Given this we will show that
the entire set can be represented in the minimization
process by a single node, without loss of information.
The complexity of this step (beyond the propagation
already required by Johnson’s Algorithm) is O(N +E),
where N and E are the numbers of nodes and edges,
respectively, in the input graph. This is well within the
Johnson bounds.

Once the graph has been contracted, step 3 uses
single-source distance information to scan the graph
for dominated edges in a systematic way. The key
data structure in this process, and in the rigidity anal-
ysis in step 2, is the predecessor graph, which is a
subgraph of the distance graph that retains only the
edges that participate in shortest paths from the cur-
rent source. We will show that one important con-
sequence of step 2 is that all predecessor graphs of
CONTR G are DAGs. This means the non-dominated
edges can be found through a fixed number of depth-
first searches in CONTR G, making the overall cost of
filtering O(N2 +NE) where N and E are the numbers
of nodes and edges in CONTR G. This is also within
the bounds of Johnson’s algorithm.

Finally, we observe that the algorithm only requires
space needed to store the input graph G, and the output
minimal dispatchable graph. Moreover, steps 2.b, 3.c
and 3.d can output the edges incrementally, so they do
not actually need to be stored in main memory. This



is a significant space improvement with respect to the
previous approach, which requiredO(N2) space to store
the intermediate all-airs shortest-path graph obtained
by Johnson’s Algorithm.

The result is an algorithm that, as we shall see, makes
it practical to apply the filtering process to enormous
networks where it would be infeasible to use the cubic
filtering algorithm.

Notation

We use upper case italics to denote nodes in a temporal
network or distance graph. Edges and paths are de-
noted by lower italics. The shortest-path distance from
node X to node Y is denoted by |XY |. In the context
of a single-source distance computation from an origin
node S, the shortest-path distance from S to any node
X is denoted by d(X). The All-Pairs Shortest-Path
graph is denoted by APSP. We will use XY to denote
an edge from X to Y in APSP .

Predecessor Graph

The central data structure needed for steps 2 and 3 is
the predecessor graph. The predecessor graph is a gen-
eralization of the predecessor tree generated by a single-
source shortest-path algorithm (Cormen, Leiserson, &
Rivest 1990). The predecessor tree is constructed while
finding some shortest-path from a source node to every
other node. The predecessor graph, on the other hand,
concisely represents information on all shortest-paths
from the source node.

Definition 1 Given a consistent distance graph, the
predecessor graph with respect to an origin node S, de-
noted by P(S), is the subgraph defined by the set of all
edges on shortest paths from S.

The next result gives a characterization that allows
edges to be checked locally for membership in the pre-
decessor graph.

Theorem 2 An edge from node X to node Y is in
P(S) if and only if

d(Y ) = d(X) + b(X,Y )

where b(X,Y ) is the length of the edge, and d(X) and
d(Y ) are the shortest-path distances from S to X and
Y , respectively.

Proof Let e be the edge from X to Y .
Suppose the distance equation d(Y ) = d(X)+b(X,Y )

holds. Then the path from S to Y that passes through
X and along e has length equal to the shortest-path
distance to Y . Thus, e is on a shortest path.

Conversely, suppose e is on a shortest path p from
S. Without loss of generality, we may assume e is the
last edge in p. Then d(Y ) = length(p). Let p′ be the
part of p that does not include the final edge e. Since
any subpath of a shortest path is itself a shortest path,
we have d(X) = length(p′). It follows that d(Y ) =
d(X) + b(X,Y ). 2

Corollary 2.1 Every path in P(S) is a shortest path.
Moreover, the length of such a path from X to Y in
P(S) is given by d(Y )− d(X).

Proof Consider a path p from a node X to a node Y . If
we sum the distance equations from Theorem 2 for each
edge in the path, we obtain d(Y ) = d(X) + l(p), where
l(p) is the length of p. It follows that p is a shortest
path, since otherwise we could derive a smaller value
for d(Y ) by choosing a shorter alternative to p. It also
follows that l(p) = d(Y )− d(X). 2

Dominance

As noted before, we need to systematically apply the
Triangle Rule to all triangles in APSP for which the
triangle equality among distances applies. The follow-
ing theorem allows us to precisely pinpoint these tri-
angles among the O(N3) possible triangles in APSP .
This observation is a key element in the efficiency of the
proposed algorithm.

Theorem 3 Let A, B, and C be nodes in a consistent
distance graph. Then the equation |AC| = |AB|+ |BC|
holds if and only if there is a path from B to C in P(A).

Proof
Suppose the equation |AC| = |AB| + |BC| holds.

Then there is a shortest path from A to C that passes
through B. By definition, all the edges on this path are
in P(A). In particular, the subpath from B to C is in
P(A).

Conversely, suppose P(A) includes a path from B to
C. By Corollary 2.1, this is a shortest path and its
length is d(C) − d(B). Thus, |BC| = d(C) − d(B) =
|AC| − |AB|. The result follows. 2

We now construct specific tests for upper and lower
dominance. The edges considered for elimination or
retention in the following theorems are edges in the im-
plicit APSP . The algorithm does not build the full
APSP but only outputs an edge in APSP according
to the values of the upper and lower dominance tests.
The implicit edge AC of APSP is considered by ex-
amining the properties of the node C with respect to
P(A).

First we derive a test for lower-dominance of negative
edges.

Theorem 4 A negative edge AC is lower-dominated by
a negative edge AB if and only if there is a path from
B to C in P(A).

Proof Immediate by the Triangle Rule (Theorem 1)
and Theorem 3. 2

Note that in the case where P(A) is a DAG, this
means that the edge AC associated with a negative-
distance node C may be eliminated if and only if there
is another negative-distance node B that precedes C.
This suggests an algorithm that traverses the DAG,
collecting minimal negative nodes for retention. (Al-
though predecessor graphs are not acyclic in general,
step 2 of the algorithm reduces them to DAGs for the
benefit of step 3.)



The next theorem gives a condition for determining
whether a non-negative edge is upper-dominated.

Theorem 5 A non-negative edge AC is upper-
dominated if and only if there is a node B, distinct from
A and C, such that |AB| ≤ |AC| and there is a path
from B to C in P(A).

Proof
Suppose |AB| ≤ |AC| and there is a path from B to

C in P(A). By Theorem 3, |AC| = |AB| + |BC|. It
follows that |BC| ≥ 0. By the Triangle Rule, AC is
then upper-dominated by |BC|.

The argument in the converse is just the reverse.
(Note that if AC is upper-dominated by BC, then |BC|
is non-negative by definition.) 2

The above conditions can be used to decide in time
O(N+E) which edges emanating from a node A should
be retained in the output graph. While traversing
P(A), the algorithm propagates two pieces of informa-
tion. The first datum indicates whether a negative-
distance node has been encountered at a predecessor
node. The second datum keeps track of the minimum
distance value for all the predecessor nodes other than
A itself. These data are used to determine whether the
implicit edge AC corresponding to a node C is dom-
inated. If |AC| is negative, this depends on the first
datum in the manner dictated by Theorem 4. If |AC|
is non-negative, then Theorem 5 shows that the edge is
dominated if and only if the minimum distance value
for the predecessors does not exceed the distance value
for C (i.e., |AC|).

The above algorithm correctly identifies the edges to
include in the output, provided the nodes are visited
in an order that ensures the propagated values are cal-
culated correctly. In the case where the predecessor
graph is acyclic, a reverse-postorder traversal is guar-
anteed to visit all ancestors before a given node. In the
case where the predecessor graph is not initially a DAG,
we will see that the strongly-connected components can
be effectively contracted to single points, resulting in a
DAG. This is considered in the next section.

Identifying and Using Rigid
Components

An important concept for our analysis concerns a situ-
ation where two nodes have a connection with no slack.
More formally, two points X and Y are rigidly-related
if in the distance graph we have |XY |+ |Y X| = 0.

It is easy to verify that, given a consistent distance
graph, the property of being rigidly-related determines
an equivalence relation. We call each equivalence class
a rigid component (RC). We will see that constructing
a dispatchable graph can be simplified if these can be
identified; in that case the problem can be reduced to
one where each RC is contracted to a single point.

Identifying Rigid Components
Before considering the contraction process in detail, we
address the issue of how to identify each RC. For this,

we offer the following result.

Theorem 6 Given a consistent distance graph, and a
single-source propagation from an arbitrary node S that
reaches every node in the graph, each RC of the dis-
tance graph coincides with a strongly-connected compo-
nent (Cormen, Leiserson, & Rivest 1990) of the prede-
cessor graph P(S) (and vice versa).

Proof: Suppose X and Y are rigidly-related. Consider
a shortest path from the source to X. This can be
extended by a shortest path to Y and then back again
to X. Since |XY | + |YX| = 0, this is also a shortest
path to X. Thus, the predecessor graph includes a path
fromX to Y and vice versa, soX and Y are in the same
strongly-connected component.

Conversely, suppose X and Y are in the same
strongly-connected component of the predecessor
graph. Then there is a path from X to Y in P(S).
By Corollary 2.1, |XY | = d(Y ) − d(X). Similarly,
|YX| = d(X) − d(Y ). It follows that X and Y are
rigidly-related. 2

The theorem states that we can find allRC subgraphs
by doing a single-source propagation from a suitable
starting point in the distance graph. Since Johnson’s
Algorithm requires an initial run of Bellman-Ford to set
up a “potential-function” value at every node, it is con-
venient to use this to determine the strongly-connected
components and hence RC subgraphs. There is a well-
known algorithm (Cormen, Leiserson, & Rivest 1990)
for computing strongly-connected components (SCCs)
that runs in time linear in the number of edges. This
has two parts, an initial depth-first search to collect the
nodes in reverse-postorder, and a secondary traversal to
trace out each SCC. For our purposes, it is necessary
to do some further processing on every SCC. It is con-
venient to piggy-back this on the part that traces out
the SCC.

Rigid Component Contraction

In order to contract a RC to a single-point for further
processing, it is necessary to choose some point in the
RC as a representative or leader. The algorithm selects
a minimum point for this purpose, that is, a node X
such that d(X) is minimum over the RC, where d(X)
is the distance from the origin node of the single-source
propagation.

Once a leader is selected, some further issues arise.
To prepare the RC for contraction, we need to modify
the input graph so that all incoming and outgoing edges
of the RC are replaced by equivalent edges to/from the
leader. This is accomplished by appropriately modify-
ing the edge lengths. Second, in order to justify the
contraction, we need to show that the RC can be rep-
resented by the leader as far as output edges are con-
cerned. We do this by demonstrating that potential
output edges to/from the interior of the RC are domi-
nated by those to/from the leader. There will also be
edges in the output that correspond to internal edges of
the RC. These are identified and collected prior to the



contraction. This step can be accomplished by consider-
ing theRC in isolation, and simply consists of arranging
the RC nodes in a doubly-linked chain.

Rigid Component Edge Rearrangement

We now consider the preparation step that rearranges
the input graph by redirecting the outgoing and incom-
ing edges of each RC to the leader node.

Theorem 7 Suppose X and Y are rigidly-related with
|XY | = b. Then (1) an edge Y Z of length u is equiva-
lent to an edge XZ of length u+ b, and (2) an edge ZY
of length v is equivalent to an edge ZX of length v− b.

Proof: The given rigid relation corresponds to the
equation TY = TX + b. In its presence, the inequal-
ity TZ − TY ≤ u is equivalent to TZ − TX ≤ u + b. A
similar argument works for (2). 2

Notice that if two nodes in the RC are connected
to the same node Z outside the RC, then the theo-
rem provides two replacement inequalities of the form
TZ − TX ≤ u1 and TZ − TX ≤ u2. In this case, one
of the inequalities is subsumed, and we need only re-
tain the edge corresponding to TZ −TX ≤ min(u1, u2).
Thus, the replacement process allows us to recognize
and remove some logically redundant edges in the dis-
tance graph.

After the edge replacement, the only connection the
RC has to the rest of the graph is through the leader
node.

Rigid Component Edge Elimination

In this section we prove dominance properties for edges
entering or exiting nodes in a RC. In particular we see
that all edges that start or end with an “interior” node
are dominated. An interior node is a node in RC other
than the leader (minimum mode).

Lemma 1 Suppose L and A belong to the same RC,
and B is any other node. Then |AB| = |AL| + |LB|
and |BA| = |BL|+ |LA|.

Proof:
From the properties of shortest-path graphs, the tri-

angle inequalities |AB| ≤ |AL| + |LB| and |LB| ≤
|LA| + |AB| must hold. The second inequality can be
rewritten as |AB| ≥ |LB| − |LA|. Since |LA| = −|AL|,
we have |AB| ≥ |LB|+ |AL|. Combining this with the
first inequality gives |AB| = |AL|+ |LB|

The proof of the second condition is similar. 2
The following result permits the elimination from the

output of edges to/from interior nodes of an RC. The
proof requires an assumption that there are no zero-
related pairs of nodes in the distance graph. (Two nodes
X and Y are zero-related if |XY | = |Y X| = 0.) This
is actually not a significant restriction because zero-
related nodes must be executed simultaneously, and so
they may be collapsed to a single node. The system de-
scribed in this paper detects zero-related nodes during
the RC identification phase and automatically collapses
them.

Theorem 8 Assume a consistent distance graph with
no zero-related pairs. Suppose L and A are distinct
nodes in a rigid component, where L is the leader of
the RC, and suppose B is a node not in the RC. Then
the edges AB and BA are always dominated.

Proof:
We will consider only AB. The dominance proof for

BA is analogous. By lemma 1, we have |AB| = |AL|+
|LB|. We distinguish two cases, depending on whether
|AB| is negative or non-negative.

Suppose first that |AB| is negative. Note that |AL| is
also negative (assuming there are no zero-related pairs)
since L is the minimum node of the RC. Since |AB| =
|AL| + |LB|, the Triangle Rule (Theorem 1) allows us
to conclude |AB| is lower-dominated by |AL|.

Now suppose |AB| is non-negative. Since |AB| =
|AL| + |LB| and |AL| is negative, it follows that |LB|
is non-negative. Then |LB| upper-dominates |AB| by
the Triangle Rule. 2

We have shown that output edges to and from non-
leader nodes of the RC to the rest of the graph are
dominated, and so may be eliminated from the final
output. Edges in the output graph that are entirely
within the RC can be generated independently of the
rest of the graph, and may be dumped immediately.
(One valid arrangement consists of edges that connect
the nodes of the RC in a doubly-linked chain.) Thus,
the non-leader nodes play no essential role in further
processing of the input graph, and so may be deleted.
The effect is the same as contracting the RC to a single
node. (Note, however, that this may entail an arbitrary
choice of which edges to eliminate in cases of mutual
dominance. We will see in a later section that there
may be reason to redistribute some of the unfiltered
edges to the RC interior as a postprocessing step.)

Consequences of Contraction

An obvious benefit of the RC contraction process is
that it may reduce the size of the network, but this is
not its primary purpose. Because of the equivalence of
rigid components and strongly-connected components,
removal of the former will also eliminate the latter.
Thus, subsequently determined predecessor graphs are
acyclic (DAGs) This facilitates dominance identifica-
tion. For example, reverse-postorder traversals can be
used to ensure that parents are visited before children in
descents through the predecessor graph. These traver-
sals require only linear time (in the number of edges).

Another consequence is that the dominance relations
are simplified by eliminating mutual-dominating edges.
To see this we need the following result.

Theorem 9 (1) Suppose AC and BC are two non-
negative edges in APSP. Then AC and BC mutually
dominate each other if and only if A and B are rigidly-
related.

(2) Suppose AC and AB are two negative edges in
the APSP. Then AC and AB mutually dominate each
other if and only if B and C are rigidly-related.



Input Graph Output Graph

Nodes Edges Degree Edges Degree Time

Grid-SSquare family data

257 768 16 744.8 12 1.18

1025 3072 32 2997.4 22.8 29.66

4097 12288 64 12010 45.4 878.64

Grid-SWide family data

257 768 32 745.6 21.8 1.13

1025 3072 128 2982.5 90.8 18.57

4097 12288 512 11905.4 377.4 302.13

Grid-SLong family data

257 768 8 746.2 5.2 1.08

1025 3072 8 3002.2 5.8 17.17

4097 12288 8 12028.4 5.8 297.22

Grid-NHard family data

257 2166 12 570 4 3.33

1025 9944 12 2311.8 4.2 165.06

4097 40904 12 9235.8 5 12272.7

Table 1: Data from random generated networks.

Input Graph Output Graph

Nodes Edges Deg. #RC Edges Deg. Time

61 133 24 37 106 18 0.02

63 135 26 35 104 17 0.02

42 84 11 28 64 11 0.01

85 194 48 46 153 27 0.03

59487 192790 1151 7111 190733 4104 2230

Table 2: Data from natural plans.

The proof is omitted for brevity, but is an easy conse-
quence of combining the triangle conditions associated
with the mutual dominance relations. The theorem
shows that mutually dominating edges imply nontrivial
rigid components. Thus, in a graph where the RC sub-
graphs are contracted, the dominance relation becomes
asymmetric. This removes any danger of inadvertently
eliminating both edges in a mutually-dominating pair.

Experimental Results
The algorithm was implemented in Lisp and the ex-
periments were run on an Ultra-2 Sparc. We experi-
mented with five natural temporal plans as well as 60
randomly generated ones. Four out of the five natural
plans were generated by the planner/scheduler of the
Remote Agent control architecture (Pell et al. 1997)
and were relatively small, averaging about 60 nodes.
The fifth plan was taken from an an avionics processor
schedule for a commercial aircraft provided by Honey-
well (Carpenter, Driscoll, & Hoyme 1994) and was much
larger, having about 60,000 nodes.

For the generation of the random networks we used
the same code as in (Cherkassky, Goldberg, & Radzik
1996), where a variety of shortest paths algorithms are
evaluated on a number of different families of randomly
generated networks. We chose the four families of net-
works that most approximate STNs found in natural
plans: Grid-SSquare, Grid-SWide, Grid-SLong, and

Grid-NHard. For every family and every different size
of the initial network we generated 5 network instances.
The averages for a number of different statistics are re-
ported in table 1. The initials in tables 1 and 2 stand
for: Nodes, the number of nodes in the input and out-
put graphs; Edges, the number of edges; Degree, the
maximum out-degree; Time, the time in seconds for
the filtering algorithm to run; and #RC, the number
of rigid components in the input graph. All statistics
are within 15% of the reported average.

From the results of tables 1 and 2 we observe that the
number of edges in the output graph is much smaller
than the worst case corresponding to the APSP , which
has N(N − 1) directed edges. In fact, in our experi-
ments, the output graph was slightly smaller than the
input graph—an indication of some redundancy in the
latter.

A second observation is that the performance of the
algorithm is greatly improved relatively to the old cubic
algorithm. A 60,000 nodes network, such as the one
displayed in table 2, would take at least an estimated
48.7 days to be filtered (counting only memory accesses,
assuming an extremely fast memory cycle of 5ns) and
would use about 14.14 GBytes of memory (assuming 4
bytes per edge). The new algorithm filtered the network
in about 37 minutes using 25.3 MBytes of memory. Out
of these only 204.7 KBytes are used for data structures
other than the input graph.

Minimizing the Outdegree
The foregoing sections of this paper have addressed the
issue of producing a dispatchable network with a min-
imum number of edges. However, the time needed for
propagation by the dispatching controller (Step 4 in
Figure 2) depends on the indegree and outdegree of the
node, i.e., the number of edges to or from from the
node. Thus, to optimize the Real-Time execution guar-
antee we need to minimize the maximum indegree and
outdegree in the network. In this section, we briefly
sketch how this can be done for the outdegree within
the framework developed in this paper. A similar anal-
ysis can be used to minimize the maximum indegree.

Out of all the edge-minimal dispatchable networks,
we seek one that minimizes the maximum outdegree.
(Notice that we need only consider the edge-minimal
dispatchable networks. If a dispatchable network has
a small maximum outdegree but does not have a mini-
mum number of edges, we can eliminate edges from it
until it is edge-minimal.) The different edge-minimal
networks correspond to different choices of which edge
to eliminate in cases of mutual dominance. Theorem 9
shows that mutual dominance is associated with the
rigid components. Within the framework of the Fast-
Filtering algorithm, we can ensure minimality in terms
of maximum outdegree by judiciously choosing which
edges to keep among those outgoing from the nodes in
each RC.

Consider an RC with leader L. The algorithm as
presented resolves mutual dominance in a way that as-



signs to L all outgoing edges from the RC (in the fi-
nal output graph). To assure minimality of maximum
outdegree, we need instead to redistribute those out-
edges as evenly as possible among the nodes of the RC.
The redistribution actually involves choosing alternate
members of mutual dominating pairs, but we visualize
it as “moving” the out-edges from the minimum node
to the other nodes of the RC. An examination of the
mutual dominance conditions associated with an RC
shows that only non-negative out-edges may be moved,
and they may only be moved over the range in which
they remain non-negative. During the move algorithm
a number of internal nodes of RC will be “poorest,” i.e.,
will have a minimum number of out-edges. It is easy
to see that a greedy algorithm that moves edges with
the shortest ranges first, and moves them to one of the
currently “poorest” nodes will provide an optimal dis-
tribution. Since the range depends on the edge length,
this requires sorting the list of out-edges according to
length. Finding a “poorest” node involves searching the
RC within the allowable range. Adopting conservative
upper bounds for these operations, the complexity for
the redistribution is

∑
i(Ei logEi+Ei ∗Ki) where Ei is

the number of out-edges from the leader, and Ki is the
number of nodes, of the i-th RC in an enumeration of
all RC subgraphs. Note that Ei < N and

∑
iKi = N ,

where N is the total number of nodes. Thus, an up-
per bound on the complexity is given by O(N2 logN),
which fits within the bound of Johnson’s Algorithm.

Conclusion

We have presented a sophisticated algorithm for refor-
mulating temporal plans so that they may be executed
with local propagation. With linear space and time
complexity equivalent to Johnson’s Algorithm, this is
a substantial improvement over the previous simpler
quadratic space and cubic time algorithm.
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